GENERAL DESCRIPTION

The CM2500 is a current-mode step-down DC-DC converter that generates up to 2 A output current at 380 kHz switching frequency. The device utilizes advanced BCD process for operation with input voltage up to 20 V consuming only $20 \mu \mathrm{~A}$ in shutdown mode, the CM2500 is highly efficient with peak efficiency at 95% when in operation.

Protection features include cycle-by-cycle current limit, thermal shutdown, and frequency fold back at short circuit.

The CM2500 is available in SOP-8 package and requires very few external devices for operation.

FEATURES

- 2A Output Current
- Up to 95\% Efficiency
- 4.75V to 20 V Input Range
- 20رA Shutdown Supply Current
- 380kHz Switching Frequency
- Adjustable Output Voltage from 1.28 V to $0.85 \cdot \mathrm{VIN}$
- Cycle-by-Cycle Current Limit Protection
- Thermal Shutdown Protection
- Frequency Fold Back at Short Circuit
- Stability with Wide Range of Capacitors,
- SOP-8 Package

APPLICATIONS

- TFT LCD Monitors
- Portable DVDs
- Car-Powered or Battery-Powered Equipments
- Set-Top Boxes
- Telecom Power Supplies
- DSL and Cable Modems and Routers
- Termination Supplies

TYPICAL APPLICATIONS

Figure 1. Typical Application Circuit

PIN CONFIGURATION

BLOCK DIAGRAM

Figure 2. Functional Block Diagram

ORDERING INFORMATION

Part Number	Temperature Range	Package	Packing
CM2500GIS	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$	SOP-8	TAPE \& REEL

ABSOLUTE MAXIMUM RATINGS

OPERATING RATINGS

Ambient Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right) \ldots \ldots \ldots \ldots . .-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

PIN DESCRIPTION

Pin Number	Pin Name	Pin Description
$\mathbf{1}$	BS	Bootstrap. This pin acts as the positive rail for the high-side switch's gate driver. Connect a 10nF capacitor between BS and SW.
$\mathbf{2}$	IN	Input Supply. Bypass this pin to G with a low ESR capacitor. See Input Capacitor in the Application Information section.
$\mathbf{3}$	SW	Switch Output. Connect this pin to the switching end of the inductor.
$\mathbf{4}$	GND	Ground.
$\mathbf{5}$	COMP	Feedback Input. The voltage at this pin is regulated to 1.28V. Connect to the resistor
divider between output and ground to set output voltage.		
$\mathbf{6}$	Compensation Pin. See Stability Compensation in the Application Information section.	
$\mathbf{7}$	N/C	Enable Input. When higher than 1.85 V , this pin turns the IC on. When lower than 1.7V, this pin turns the IC off. Output voltage is discharged when the IC is off. When left unconnected, EN is pulled up to 4.5V tip with a 2.5
$\mathbf{8}$	Not Connected.	

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

PARAMETER	VALUE	UNIT
IN Supply Voltage	-0.3 to 20	V
SW Voltage	-1 to VIN +1	V
BS Voltage	VSW -0.3 to VSW +6	V
EN, FB, COMP Voltage	-0.3 to 6	V
Continuous SW Current	Internally \quad Limited	A
Junction to Ambient Thermal Resistance($\theta \mathrm{JA})$	105	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Power Dissipation	0.76	W
Operating Junction Temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	300	${ }^{\circ} \mathrm{C}$

APPLICATION CIRCUIT

Figure 3. CM2500 2.5V/2A Output Application

ELECTRICAL CHARACTERISTICS

(VIN $=12 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$ unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage	VIN	VOUT $=5 \mathrm{~V}, \mathrm{ILOAD}=0 \mathrm{~A}$ to 1 A	7		20	V
Feedback Voltage	VFB	$4.75 \mathrm{~V} \leq \mathrm{VIN} \leq 20 \mathrm{~V}, \mathrm{VCOMP}=1.5 \mathrm{~V}$	1.184	1.222	1.258	V
High-Side Switch On Resistance	RONH			0.22		Ω
Low-Side Switch On Resistance	RONL			4.7		Ω
SW Leakage		VEN $=0$		1	10	$\mu \mathrm{A}$
Current Limit	ILIM		2.6	3.3		A
COMP to Current Limit Transconductance	GCOMP			1.8		A/V
Error Amplifier Transconductance	GEA	$\Delta \mathrm{ICOMP}= \pm 10 \mu \mathrm{~A}$		550		$\mu \mathrm{A} / \mathrm{V}$
Error Amplifier DC Gain	AVEA			3200		V/V
Switching Frequency	fSW		300	360	420	kHz
Short Circuit Switching Frequency		$V F B=0$		50		kHz
Maximum Duty Cycle	DMAX	$\mathrm{VFB}=1.1 \mathrm{~V}$		90		\%
Minimum Duty Cycle		$\mathrm{VFB}=1.4 \mathrm{~V}$			0	\%
Enable Threshold Voltage		Hysteresis $=0.1 \mathrm{~V}$	2.0	2.2		V
Enable Pull Up Current		Pin pulled up to 4.5 V typically when left unconnected		2.5		uA
Supply Current in Shutdown		VEN=0		20	50	uA
IC Supply Current in Operation		$\mathrm{VEN}=3 \mathrm{~V}, \mathrm{VFB}=1.4 \mathrm{~V}$		1.0	1.5	mA
Thermal Shutdown Temperature		Hysteresis $=10^{\circ} \mathrm{C}$		168		${ }^{\circ} \mathrm{C}$

FUNCTIONAL DESCRIPTION

As seen in Figure 2, Functional Block Diagram, the CM2500 is a current mode pulse width modulation (PWM) converter. The converter operates as follows: A switching cycle starts when the rising edge of the Oscillator clock output causes the High- Side Power Switch to turn on and the Low-Side Power Switch to turn off. With the SW side of the inductor now connected to IN, the inductor current ramps up to store energy in the magnetic field. The inductor current level is measured by the Current Sense Amplifier and added to the Oscillator ramp signal. If the resulting summation is higher than the COMP voltage, the output of the PWM Comparator goes high. When this happens or when Oscillator clock output goes low, the High-Side Power Switch turns off and the Low-Side Power Switch turns on. At this point, the SW side of the inductor swings to a diode voltage below ground, causing the inductor current to decrease and magnetic energy to be transferred to output. This state continues until the cycle starts again. The High-Side Power Switch is driven by logic using BS as the positive rail. This pin is charged to VSW +6 V when the Low-Side Power Switch turns on.

The COMP voltage is the integration of the error between FB input and the internal 1.28 V reference. If FB is lower than the reference voltage, COMP tends to go higher to increase current to the output. Current limit happens when COMP reaches its maximum clamp value of 2.55 V .

The Oscillator normally switches at 380 kHz . However, if FB voltage is less than 0.7 V , then the switching frequency decreases until it reaches a minimum of 50 kHz at VFB $=$ 0.5 V .

SHUTDOWN CONTROL

The CM2500 has an enable input EN for turning the IC on or off. When EN is less than 1.8 V , the IC is in $8 \mu \mathrm{~A}$ low current shutdown mode and output is discharged through the LowSide Power Switch. When EN is higher than 1.85 V , the IC is in normal operation mode. EN is internally pulled up with a $2.5 \mu \mathrm{~A}$ current source and can be left unconnected for always-on operation. Note that EN is a low voltage input with a maximum voltage of 6 V ; it should never be directly connected to IN.

THERMAL SHUTDOWN

The CM2500 automatically turns off when its junction temperature exceeds $170^{\circ} \mathrm{C}$.

APPLICATION INFORMATION

OUTPUT VOLTAGE SETTING

Figure 4 . Output Voltage Setting

Figure 4 shows the connections for setting the output voltage. Select the proper ratio of the two feedback resistors RFB1 and RFB2 based on the output voltage. Typically, use RFB2 \approx $10 \mathrm{k} \Omega$ and determine RFB1 from the following equation:

$$
\begin{equation*}
R_{F B 1}=R_{F B 2}\left(\frac{V_{\text {OUT }}}{1.222 V}-1\right) \tag{1}
\end{equation*}
$$

INDUCTOR SELECTION

The inductor maintains a continuous current to the output load. This inductor current has a ripple that is dependent on the inductance value: higher inductance reduces the peak-to-peak ripple current. The trade off for high inductance value is the increase in inductor core size and series resistance, and the reduction in current handling capability. In general, select an inductance value L based on the ripple current requirement:

$$
\begin{equation*}
L=\frac{V_{\text {OUT }} \cdot\left(V_{\text {IN }}-V_{\text {OUT }}\right)}{V_{\text {IN }} f_{\text {SW }} I_{\text {OUTMAX }} K_{\text {RIPPLE }}} \tag{2}
\end{equation*}
$$

where VIN is the input voltage, VOUT is the output voltage, fSW is the switching frequency, IOUTMAX is the maximum output current, and KRIPPLE is the ripple factor. Typically, choose KRIPPLE $=30 \%$ to correspond to the peak-to-peak ripple current being 30% of the maximum output current. With this inductor value, the peak inductor current is IOUT • ($1+$ KRIPPLE / 2). Make sure that this peak inductor current is less that the 3A current limit. Finally, select the inductor core size so that it does not saturate at 3A. Typical inductor values for various output voltages are shown in Table 1.
Table 1. Typical Inductor Values

VOUT	1.5 V	1.8 V	2.5 V	3.3 V	5 V
\mathbf{L}	$6.8 \mu \mathrm{H}$	$6.8 \mu \mathrm{H}$	$10 \mu \mathrm{H}$	$15 \mu \mathrm{H}$	$22 \mu \mathrm{H}$

INPUT CAPACITOR

The input capacitor needs to be carefully selected to maintain sufficiently low ripple at the supply input of the converter. A low ESR capacitor is highly recommended. Since large current flows in and out of this capacitor during switching, its ESR also affects efficiency. The input capacitance needs to be higher than $10 \mu \mathrm{~F}$. The best choice is the ceramic type; however, low ESR tantalum or electrolytic types may also be used provided that the RMS ripple current rating is higher than 50% of the output current. The input capacitor should be placed close to the IN and G pins of the IC, with the shortest traces possible. In the case of tantalum or electrolytic types, they can be further away if a small parallel $0.1 \mu \mathrm{~F}$ ceramic capacitor is placed right next to the IC.

OUTPUT CAPACITOR

The output capacitor also needs to have low ESR to keep low output voltage ripple. The output ripple voltage is:

$$
V_{\text {RIPPLE }}=I_{\text {OUTMAX }} K_{\text {RIPPLE }} R_{\text {ESR }}
$$

$+\frac{V_{I N}}{28 \cdot f_{S W}{ }^{2} L C_{O U T}}$
where IOUTMAX is the maximum output current, KRIPPLE is the ripple factor, RESR is the ESR of the output capacitor, fSW is the switching frequency, L is the inductor value, and COUT is the output capacitance. In the case of ceramic output capacitors, RESR is very small and does not contribute to the ripple. Therefore, a lower capacitance value can be used for ceramic capacitors. In the case of tantalum or electrolytic capacitors, the ripple is dominated by RESR multiplied by the ripple current. In that case, the output capacitor is chosen to have sufficiently low ESR.
For ceramic output capacitors, typically choose a capacitance of about $22 \mu \mathrm{~F}$. For tantalum or electrolytic capacitors, choose a capacitor with less than $50 \mathrm{~m} \Omega$ ESR.

RECTIFIER DIODE

Use a Schottky diode as the rectifier to conduct current when the High-Side Power Switch is off. The Schottky diode must have a current rating higher than the maximum output current and a reverse voltage rating higher than the maximum input voltage.

STABILITY COMPENSATION

${ }^{*}$ Coow 2 is needed only for high ESR output capacitor
Figure 5. Stability Compensation
The feedback loop of the IC is stabilized by the components at the COMP pin, as shown in Figure 5. The DC loop gain of the system is determined by the following equation:

$$
\begin{equation*}
A_{V D C}=\frac{1.3 \mathrm{~V}}{I_{O U T}} A_{V E A} G_{C O M P} \tag{4}
\end{equation*}
$$

The dominant pole P 1 is due to $\mathrm{C}_{\text {comp: }}$:
$f_{P 1}=\frac{G_{E A}}{2 \pi A_{V E A} C_{C O M P}}$

The second pole P2 is the output pole:

$f_{P 2}=\frac{I_{\text {OUT }}}{2 \pi V_{\text {OUT }} C_{\text {OUT }}}$
The first zero Z 1 is due to $\mathrm{R}_{\text {comp }}$ and $\mathrm{C}_{\text {comp }}$:
$f_{Z 1}=\frac{1}{2 \pi R_{\text {COMP }} C_{\text {COMP }}}$
And finally, the third pole is due to Rcomp and $\mathrm{C}_{\text {comp2 }}$ (if $\mathrm{C}_{\text {comp2 }}$ is used):

$$
\begin{equation*}
f_{P 3}=\frac{1}{2 \pi R_{\text {COMP }} C_{\text {COMP2 }}} \tag{8}
\end{equation*}
$$

The following steps should be used to compensate the IC:
STEP 1. Set the crossover frequency at $1 / 10$ of the switching frequency via Rcomp:

$$
\begin{align*}
& R_{C O M P}=\frac{2 \pi V_{O U T} C_{O U T} f_{S W}}{10 G_{E A} G_{C O M P} \cdot 1.3 V} \\
& =1.7 \times 10^{8} V_{\text {OUT }} C_{O U T} \tag{9}
\end{align*}
$$

but limit $\mathrm{R}_{\text {comp }}$ to $15 \mathrm{k} \Omega$ maximum.

STEP 2. Set the zero fZ1 at $1 / 4$ of the crossover frequency. If RCOMP is less than $15 \mathrm{k} \Omega$, the equation for CCOMP is:

$$
\begin{equation*}
C_{C O M P}=\frac{1.8 \times 10^{-5}}{R_{\text {COMP }}} \tag{F}
\end{equation*}
$$

If RCOMP is limited to $15 \mathrm{k} \Omega$, then the actual cross over frequency is 3.4 / (VOUTCOUT). Therefore:

$$
\begin{equation*}
C_{\text {COMP }}=1.2 \times 10^{-5} V_{\text {OUT }} C_{\text {OUT }} \tag{11}
\end{equation*}
$$

STEP 3. If the output capacitor's ESR is high enough to cause a zero at lower than 4 times the crossover frequency, an additional compensation capacitor CCOMP2 is required. The condition for using CCOMP2 is:
RESRCOUT
$\geq \operatorname{Min}\left(\frac{1.1 \times 10^{-6}}{C_{\text {OUT }}}, 0.012 \cdot V_{\text {OUT }}\right)$
And the proper value for CCOMP2 is:

$$
\begin{equation*}
C_{C O M P 2}=\frac{C_{O U T} R_{\text {ESRCOUT }}}{R_{\text {COMP }}} \tag{13}
\end{equation*}
$$

Though CCOMP2 is unnecessary when the output capacitor has sufficiently low ESR, a small value CCOMP2 such as 100 pF may improve stability against PCB layout parasitic effects. Table 2 shows some calculated results based on the compensation method above.
Table 2. Typical Compensation for Different

Output Voltages and Output Capacitors

VOUT	COUT	RCOMP	CCOMP	CCOMP2
2.5 V	$22 \mu \mathrm{~F}$ Ceramic	$8.2 \mathrm{k} \Omega$	2.2 nF	None
3.3 V	$22 \mu \mathrm{~F}$ Ceramic	$12 \mathrm{k} \Omega$	1.5 nF	None
5 V	$22 \mu \mathrm{~F}$ Ceramic	$15 \mathrm{k} \Omega$	1.5 nF	None
2.5 V	$47 \mu \mathrm{~F} \mathrm{SP} \mathrm{Cap}$	$15 \mathrm{k} \Omega$	1.5 nF	None
3.3 V	$47 \mu \mathrm{~F} \mathrm{SP} \mathrm{Cap}$	$15 \mathrm{k} \Omega$	1.8 nF	None
5 V	$47 \mu \mathrm{~F} \mathrm{SP} \mathrm{Cap}$	$15 \mathrm{k} \Omega$	2.7 nF	None
2.5 V	$470 \mu \mathrm{~F} / 6.3 \mathrm{~V} / 30 \mathrm{~m} \Omega$	$15 \mathrm{k} \Omega$	15 nF	1 nF
3.3 V	$470 \mu \mathrm{~F} / 6.3 \mathrm{~V} / 30 \mathrm{~m} \Omega$	$15 \mathrm{k} \Omega$	22 nF	1 nF
5 V	$470 \mu \mathrm{~F} / 10 \mathrm{~V} / 30 \mathrm{~m} \Omega$	$15 \mathrm{k} \Omega$	27 nF	None

TYPICAL PERFORMANCE CHARACTERISTICS

PACKAGE DIMENSION

SOP-8

SYMBOL	DIMENSION IN MILLIMETERS		DIMENSION IN INCHES	
	MIN	MAX	MIN	MAX
	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
B	0.330	0.510	0.013	0.020
C	0.190	0.250	0.007	0.010
D	4.780	5.000	0.188	0.197
E	3.800	4.000	0.150	0.157
E1	5.800	6.300	0.228	0.248
e	1.270 TYP	0.050 TYP		
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

5F, No. 11, Park Avenue II,	7F-6, No.32, Sec. 1, Chenggong Rd., Nangang
Science-Based Industrial Park,	District, Taipei City 115, Taiwan
HsinChu City, Taiwan	
TEL: +886-3-567 9979	TEL: +886-2-2788 0558
FAX: +886-3-567 9909	FAX: $+886-2-27882985$

